
🐇 🦀

In This Talk…

• Different “types” of BPF programs

• Write BPF programs in Rust

• Add new feature in RedBPF

• Use BPF maps to make stateful decisions

• Load the program and protect the Rabbit(MQ)!

About Me

• Software Engineer @ CCP Games

• @aquarhead on GitHub, Twitter…

• Rust (and Elixir)

• Disclaimer: new to BPF & kernel networking,
pardon my mistake and welcome corrections!

Sad Rabbit Has No Memory

• A faulty client spammed “AMQP consumers”

• RabbitMQ cluster runs out of memory

• Need a way to limit the number of consumers

• But adding such a feature in RabbitMQ could be
a long process…

Build a Limiter in BPF

• Let’s use BPF to get a quick win!

• Track how many “AMQP consumers” have been
declared for each connection

• Drop further consumer declare packets once the
limit is hit

RedBPF
• Most frameworks require C for BPF programs

• RedBPF uses Rust for both in-kernel and user-
space programs - benefits from LLVM integration

• Rust: expressive type system, modern toolchain -
but most importantly, I love Rust!

• For networking, RedBPF supports XDP and
SocketFilter programs, however…

Traffic Control for Real
• XDP doesn’t seem would work (full TCP packet

hasn’t been constructed yet - I could be wrong)

• SocketFilter is not useful: it only duplicates
filtered traffic to a user-space program (e.g. for
analyzing), does not affect original packets

• `tc` can actually control packets! And use BPF!

• Let’s add support for it in RedBPF

`tc` Support in RedBPF
• BPF programs are all the “same”

• “Type” really depends on the input and how the
kernel interprets the output

• `tc` programs also take `sk_buff` - steal from
SocketFilter

• Use Enum to wrap potential return codes

• Done in https://github.com/redsift/redbpf/pull/97

https://github.com/redsift/redbpf/pull/97

Write BPF in Rust

• Ethernet frame, IP header, TCP header

• Only look at IPv4, TCP packet to AMQP port

• Extract source IP & port as BPF map key

Extract AMQP Methods

Use BPF Maps

Use BPF Maps
• Using the source IP & port as

map key

• Map is a counter for consumers
per connection

Use BPF Maps
• Using the source IP & port as

map key

• Map is a counter for consumers
per connection

• Increase when declare

Use BPF Maps
• Using the source IP & port as

map key

• Map is a counter for consumers
per connection

• Increase when declare

• Decrease when cancel

Use BPF Maps
• Using the source IP & port as

map key

• Map is a counter for consumers
per connection

• Increase when declare

• Decrease when cancel

• Drop (Shot) the declare packet
if count is 10

See it in Action!
Can we protect the Rabbit?

Without Limiter

Attach `tc` Program

$ cargo make release

$ sudo tc qdisc add dev [device name] clsact

$ sudo tc filter add dev [device name] ingress \
 bpf da obj target/bpf/programs/limit/limit.elf \
 sec tc_action/limit

Rabbit(MQ) Protected

BPF (Kernel) vs. Application

• BPF programs can be developed and deployed
very quickly, and with great confidence due to
kernel verifier

• Extra effort to track deeper state in applications
(e.g. channel/connection relationship)

• BPF can cause unintended behavior (e.g. broken
connection), but still a worthy tradeoff, especially
in preventing misuse

More on RedBPF
• Plan to make RedBPF support more (all) program

types - make it a generic compiler (BCC)

• Add utility functions to help dealing with network
headers etc…

• Improve the compile output - ensure it works with
other loader, size etc…

• Give RedBPF a try! Contributions welcome!

Takk!
Code: https://github.com/aquarhead/protect-the-rabbit

Talk to me: aquarhead@gmail.com / @aquarhead
https://aqd.is

https://github.com/aquarhead/protect-the-rabbit
mailto:aquarhead@gmail.com
https://aqd.is

