bpfbox: Simple Precise
Process Confinement A eBPF
with eBPF and KRSI Summit

William Findlay October 28 , 2020



bpfbox at a Glance

» bpfbox is a novel process confinement
mechanism for Linux using eBPF

» Users write per-application policy in a simple
policy language

» Policy is enforced by attaching BPF programs
to LSM hooks

P Integrates userspace and kernelspace state
into policy decisions

1/7



Motivation
» Existing process confinement mechanisms are complex

oA /" snapcraft ™~
— \ seccomp-bpf «— —>Unix DAC

Namespaces

Capabilities Cgroups

seccomp-bpt @ <.

Namespaces

» Existing process confinement mechanisms are difficult to use

® @ &

SELinux AppArmor TOMOYO

» Can we do any better?

2/7



eBPF Changes the Game

eBPF enables:
» Fine-grained system introspection

» Integration of cross-layer state (kprobes, uprobes, etc.) with policy enforcement
(LSM probes)

» Rapid prototyping

» Safe production deployment of new security solutions

We have an opportunity to rethink process confinement from the ground up.

3/7



bpfbox Implementation

» Userspace daemon using the Python3 bcc framework

» Kernelspace components are all eBPF
» LSM probes (KRSI), kprobes, uprobes, tracepoints

~ - R
» Under 2000 source lines of kernelspace code b¢ P pgthon

!
» Thanks to eBPF, bpfbox is light-weight, flexible, aeBPF
and production-safe

» Works out of the box on any vanilla Linux kernel
>58

4/7



Our Policy Language

Rules and Directives

Rules specify access to system objects:
» fs(file, access)
» net(socket, access)
» signal(prog, sig)
> etc.

Directives augment blocks of rules:
» #[directive] syntax
» Specify actions to be taken on a block of rules
» Add additional context to a block of rules

5/7



Our Policy Language

Policy at the Function Call Level

» #[func "foo"] — Apply rules only within a call to foo()
» #[kfunc "foo"] — Same thing, but for kernel functions

#![profile "/sbin/mylogin"]

#[func "check_password"]
#[lallow] {
fs("/etc/passwd", read)
fs("/etc/shadow", read)
}

#[func "add_user"]

#[allow] {
fs("/etc/passwd", read|append)
fs("/etc/shadow", read|append)

/¥ ... %/



Acknowledgements

Special thanks to:
» Alexei Starovoitov and Daniel Borkmann (creators of eBPF)
» K.P. Singh (creator of KRSI)
» Fellow bce contributors (an awesome eBPF framework)

This work was supported by NSERC through a Discovery Grant.

github.com/willfindlay/bpfbox
Check out the project on GitHub!

7/7


https://github.com/willfindlay/bpfbox

