
bpfbox: Simple Precise
Process Confinement
with eBPF and KRSI

William Findlay October 28, 2020

bpfbox at a Glance

I bpfbox is a novel process confinement
mechanism for Linux using eBPF

I Users write per-application policy in a simple
policy language

I Policy is enforced by attaching BPF programs
to LSM hooks
I Integrates userspace and kernelspace state

into policy decisions

1 / 7

Motivation
I Existing process confinement mechanisms are complex

seccomp-bpf

Unix DAC

Namespaces
CgroupsCapabilities

Namespaces

Unix DAC

seccomp-bpf

I Existing process confinement mechanisms are difficult to use

SELinux AppArmor TOMOYO

I Can we do any better?
2 / 7

eBPF Changes the Game

eBPF enables:

I Fine-grained system introspection

I Integration of cross-layer state (kprobes, uprobes, etc.) with policy enforcement
(LSM probes)

I Rapid prototyping

I Safe production deployment of new security solutions

We have an opportunity to rethink process confinement from the ground up.

3 / 7

bpfbox Implementation

I Userspace daemon using the Python3 bcc framework

I Kernelspace components are all eBPF
I LSM probes (KRSI), kprobes, uprobes, tracepoints
I Under 2000 source lines of kernelspace code

I Thanks to eBPF, bpfbox is light-weight, flexible,
and production-safe
I Works out of the box on any vanilla Linux kernel
≥ 5.8

4 / 7

Our Policy Language
Rules and Directives

Rules specify access to system objects:

I fs(file, access)

I net(socket, access)

I signal(prog, sig)

I etc.

Directives augment blocks of rules:

I #[directive] syntax

I Specify actions to be taken on a block of rules

I Add additional context to a block of rules

5 / 7

Our Policy Language
Policy at the Function Call Level

I #[func "foo"] → Apply rules only within a call to foo()

I #[kfunc "foo"] → Same thing, but for kernel functions

#![profile "/sbin/mylogin"]

#[func "check_password"]

#[allow] {

fs("/etc/passwd", read)

fs("/etc/shadow", read)

}

#[func "add_user"]

#[allow] {

fs("/etc/passwd", read|append)

fs("/etc/shadow", read|append)

}

/* ... */

6 / 7

Acknowledgements
Special thanks to:
I Alexei Starovoitov and Daniel Borkmann (creators of eBPF)
I K.P. Singh (creator of KRSI)
I Fellow bcc contributors (an awesome eBPF framework)

This work was supported by NSERC through a Discovery Grant.

github.com/willfindlay/bpfbox

Check out the project on GitHub!

7 / 7

https://github.com/willfindlay/bpfbox

