
How and When You 
Should Measure CPU 
Overhead of eBPF 
Programs

Bryce Kahle, Datadog October 28, 2020



Why should I profile eBPF programs?



CI variance tracking



Tools



kernel.bpf_stats_enabled



kernel.bpf_stats_enabled sysctl

– Added in kernel v5.1 (off by default)
– Turns on stats collection for all eBPF programs
– exposes total run_time_ns and run_cnt
– Use cases:

– Benchmarking + CI/CD

– Sampling profiler in production



How does it work?

– Adds ~20ns of overhead per run



Two ways to enable kernel eBPF stats

sysctl procfs



Three ways to access kernel eBPF stats

bpftool prog show bpf syscall BPF_OBJ_GET_INFO_BY_FD

procfs



BPF_ENABLE_STATS

Added in kernel v5.8

FD-based alternative to sysctl

Handles multiple concurrent profilers



bpftool prog profile



bpftool prog profile

– Added in kernel v5.7
– Uses hardware perf counters
– Available metrics:

– cycles, instructions, l1d_loads, llc_misses

– Used for more in-depth profiling
 



bpftool prog run / BPF_PROG_TEST_RUN



bpftool prog run

– Added in kernel v4.12
– Only for specific program types
– Specify how many times to repeat
– Control input data and/or context. Examine output data/context.
– Use cases:

– Unit testing

– Debugging



bpftool prog run

Program Type Input Data Input Context Output Data Output Context Repeat

BPF_PROG_TYPE_SOCKET_FILTER ✔ ✔ ✔ ✔ ✔

BPF_PROG_TYPE_SCHED_CLS ✔ ✔ ✔ ✔ ✔

BPF_PROG_TYPE_SCHED_ACT ✔ ✔ ✔ ✔ ✔

BPF_PROG_TYPE_CGROUP_SKB ✔ ✔ ✔ ✔ ✔

BPF_PROG_TYPE_LWT_IN ✔ ✔ ✔ ✔ ✔

BPF_PROG_TYPE_LWT_OUT ✔ ✔ ✔ ✔ ✔

BPF_PROG_TYPE_LWT_XMIT ✔ ✔ ✔ ✔ ✔

BPF_PROG_TYPE_LWT_SEG6LOCAL ✔ ✔ ✔ ✔ ✔

BPF_PROG_TYPE_XDP ✔ 🚫 ✔ 🚫 ✔

BPF_PROG_TYPE_FLOW_DISSECTOR ✔ ✔ ✔ ✔ ✔

Feature Support



ebpfbench - Go library for eBPF 
benchmarking
https://github.com/DataDog/ebpfbench



ebpfbench

API Augments testing.B

Outputs results in go benchmark format

Can be used with benchstat and other 
tools



kprobe runtime comparison programs

no-helper add helper call



benchmark program and results



Thank you!


