
Containers and BPF:
twagent story

Andrey Ignatov, Facebook October 28, 2020
1

● a daemon
● runs on every Facebook server
● manages all Facebook containers
● a part of the bigger TW system, see the

TW paper in OSDI'20 [0]

[0] https://sites.google.com/site/tangchq/papers/Twine-OSDI20.pdf

twagent
Container (aka “task”):

● namespaces: cgroup, mount, pid
and optionally: ipc, net, user, uts

● cgroup v2
● ... other usual building blocks ...
● cgroup-bpf programs

2

Vast majority of twagent tasks have one or more
cgroup-bpf features enabled:

● mostly networking:
○ IP assignment (when netns is not in-use)
○ host services connector (netns is in-use)
○ transparent proxy (mostly for TLS)
○ container firewall
○ network faults injection
○ network counters (rack, datacenter, region)

● but not only:
○ sysctl access control

Let’s look at some of them ..

Example of cgroup-bpf programs
(bpftool cgroup tree):

cgroup-bpf

3

Task IP assignment (aka IP-per-task)
● Facebook DC network is IPv6 only
● Every server has /64 IPv6 prefix
● Convenient to have a unique IPv6 per twagent

task (e.g. for QoS tagging)
● Many services don’t need full L2 isolation like that

of netns and don’t want to pay for it
● TCP and UDP is enough

Solution:

● Make task use specified IP by a set of
BPF_PROG_TYPE_CGROUP_SOCK_ADDR and
BPF_CGROUP_SOCK_OPS programs

Move TCP/UDP servers to task IP:

● bind(2): ctx.user_ip6 = task_ip

Make TCP/UDP clients use task IP as source IP:

● connect(2): bpf_bind(task_ip)
● sendmsg(2): bpf_bind(task_ip)

Handle TCP client A connecting to TCP server B in same
task by [::1]:

● listen(2): track server port by tracking
BPF_TCP_LISTEN and BPF_TCP_CLOSE

● connect(2) to [::1]: redirect to task_ip if
listener is in same task

4

Transparent Proxy
● Facebook traffic has to be encrypted
● Transparent TLS helps some services encrypt

easily
● How to send task TCP traffic to TLS forward

proxy transparently for a service?

Solution:

● Redirect client on connect(2) by
BPF_CGROUP_INET6_CONNECT and
BPF_CGROUP_SOCK_OPS programs →

● In proxy on accept(2) learn orig_dst by
connection’s src IP and port from BPF map.

● Encrypt, see [0] for details on proxy itself.

[0] https://atscaleconference.com/videos/scale-2019-enforcing-encryption-at-scale/

BPF_CGROUP_INET6_CONNECT:

● orig_dst.ip = ctx->user_ip6
● orig_dst.port = ctx->user_port
● Save <socket_cookie, orig_dst> in a map
● ctx->user_ip6 = proxy.ip
● ctx->user_port = proxy.port

BPF_SOCK_OPS_TCP_CONNECT_CB:

● src.ip = ctx->local_ip6
● src.port = htons(ctx->local_port)
● Replace <socket_cookie, orig_dst> by

<src, orig_dst> in the map
● Garbage-collect map entry on BPF_TCP_CLOSE

or use socket local storage for auto-cleanup

5

● IP firewall is still useful
● Should affect only task state, not host
● Rules auto-cleanup on task stop is important
● Has to be integrated with service discovery, etc

Solution:

● Use BPF_CGROUP_INET_{EGRESS,INGRESS}
● If use-case allows, filter on socket level by

BPF_CGROUP_INET6_{CONNECT,SENDMSG}
● Attached on task start
● Actions: pass, drop, log (via perf buffer)
● Filter by local/remote IP, IP prefix, port, protocol,

TCP flags
● Integrated with service discovery: can filter by

service name (dynamic set of IP:port endpoints)

Container firewall (twfw)
Network faults injection:

● Same per-packet firewall is used
● Attached to a task on-demand by API call
● Action can be applied with probability
● Used to test disaster recovery readiness

6

cgroup-bpf infra
● twagent is written in C++
● libbpf [0] for everything-BPF
● BPF integration with buck [1]
● BTF [2] is enabled everywhere
● Programs and their combinations are heavily

tested, incl. multi-kernel VM tests (qemu)
● Resource usage (CPU cycles, memlock)

monitored across the fleet by bpf_tax tool →
● Alerts on program load and attach failures

[0] https://github.com/libbpf/libbpf
[1] https://buck.build/
[2] https://www.kernel.org/doc/html/latest/bpf/btf.html

7

Thank you!

The work presented here done by (alphabetically):

Andrey Ignatov
Dmitrii Banshchikov

Julia Kartseva
Takshak Chahande

and many others at Facebook

8

Q&A

9

