Containers and BPF:
twagent story X eBPF

Summit

Andrey Ignatov, Facebook October 28, 2020

twagent

e adaemon Container (aka “task”):
e runs on every Facebook server
e manages all Facebook containers ® namespaces: cgroup, mount, pid
e a part of the bigger TW system, see the and optionally: ipc, net, user, uts
TW paper in OSDI'20 [0] e cgroup v2
e ... other usual building blocks ...

cgroup-bpf programs

[O] https://sites.google.com/site/tangchq/papers/Twine-OSDI20.pdf

cgroup-bpf

Vast majority of twagent tasks have one or more
cgroup-bpf features enabled:

e mostly networking:

o IP assignment (when netns is not in-use)
host services connector (netns is in-use)
transparent proxy (mostly for TLS)
container firewall
network faults injection

o network counters (rack, datacenter, region)
e but not only:

o sysctl access control

o O O O

Let’s look at some of them ..

Example of cgroup-bpf programs
(bpftool cgroup tree):

CgroupPath
ID AttachType
/sys/fs/cgroup
102655 sock_ops multi
/sys/fs/cgroup/<path/to/task/cgroupo>
91308 ingress multi tw_ingress
91310 ingress multi tw_twfw_ingress
91307 egress multi tw_egress
91311 egress multi tw_twfw_egress
91305 connecté6 tw_wdb_connect6

AttachFlags Name

ned_cgrp_dctcp

/sys/fs/cgroup/<path/to/task/cgroupl>
80863 ingress multi
80869 ingress multi tw_ingress

tw_ipt_ingress

80874 ingress multi tw_twfw_ingress
80868 egress multi tw_egress

80895 egress multi tw_twfw_egress
80861 sock_ops tw_ipt_listen
80859 bind6 tw_ipt_bind
80860 connecté6 tw_ipt_connect
80862 sendmsg6 tw_ipt_sendmsg

Task IP assignment (aka |IP-per-task)

Facebook DC network is IPv6 only

Every server has /64 IPv6 prefix

Convenient to have a unique IPv6 per twagent
task (e.g. for QoS tagging)

Many services don’t need full L2 isolation like that
of netns and don’t want to pay for it

TCP and UDP is enough

Solution:

Make task use specified IP by a set of
BPF PROG TYPE CGROUP SOCK ADDR and
BPF CGROUP SOCK OPS programs

Move TCP/UDP servers to task IP:
° bind(2) : ctx.user ip6 = task ip
Make TCP/UDP clients use task IP as source IP:

[connect (2) : bpf bind(task ip)
] sendmsg (2) : bpf bind(task ip)

Handle TCP client A connecting to TCP server B in same
taskby [::17:

e listen(2): track server port by tracking
BPF TCP LISTEN and BPF TCP CLOSE

e connect(2) to [::1]: redirectto task ipif
listener is in same task

Transparent Proxy

e Facebook traffic has to be encrypted

e Transparent TLS helps some services encrypt
easily

e How to send task TCP traffic to TLS forward
proxy transparently for a service?

Solution:

e Redirect client on connect (2) by
BPF CGROUP INET6 CONNECT and
BPF CGROUP_SOCK_ OPS programs —
e Inproxyon accept (2) learn orig dst by
connection’s src IP and port from BPF map.
e Encrypt, see [0] for details on proxy itself.

[O] https://atscaleconference.com/videos/scale-2019-enforcing-encryption-at-scale/

BPF_CGROUP INET6 CONNECT:

orig dst.ip = ctx->user ipb6

orig dst.port = ctx->user port

Save <socket cookie, orig dst>inamap
ctx->user 1p6 = proxy.ip

ctx->user port = proxy.port

BPF SOCK_OPS TCP CONNECT CB:

src.ip = ctx->local ipé6

src.port = htons(ctx->local port)
Replace <socket cookie, orig dst> by
<src, orig dst>inthe map
Garbage-collect map entry on BPF_TCP_CLOSE
or use socket local storage for auto-cleanup

Container firewall (twfw)

e |P firewall is still useful Network faults injection:
e Should affect only task state, not host
e Rules auto-cleanup on task stop is important e Same per-packet firewall is used
e Has to be integrated with service discovery, etc e Attached to a task on-demand by API call
e Action can be applied with probability
Solution: e Used to test disaster recovery readiness

e UseBPF CGROUP INET {EGRESS,INGRESS}

e |[f use-case allows, filter on socket level by
BPF CGROUP INET6 {CONNECT,SENDMSG}

e Attached on task start

e Actions: pass, drop, log (via perf buffer)

e Filter by local/remote IP, IP prefix, port, protocol,
TCP flags

e Integrated with service discovery: can filter by
service name (dynamic set of IP:port endpoints)

cgroup-bpf infra

twagent is written in C++ tw_f_sendmsgs \

tw_fw_sendmsg4 L —

1ibbpf [0] for everything-BPF T :

tw_fw_connect4 —

BPF Integl’atlon W|th bU.Ck [1] tw_tproxy_skopt = / tw_ingress

. tw_tproxy_router
BTF [2] is enabled everywhere tw_tprony_conatrack
. . . . tw_tproxy_bind
Programs and their combinations are heavily S —
tw_ipt_listen

tested, incl. multi-kernel VM tests (gemu)
e Resource usage (CPU cycles, memlock)

monitored across the fleet by bpf tax tool —
e Alerts on program load and attach failures

tw_ipt_bind
tw_egress
tw_sysctl
[0] httPS//glthUbCom/“bbpf/“bbpf : tw_ingress : tw_egress tw_sysctl : tw_ipt_bind
) . tw_ipt_connect tw_ipt_listen tw_ipt_sendmsg tw_tproxy_bind
[1] https//buck build/ @ tw_tproxy_conntrack tw_tproxy_router © tw_tproxy_skopt @ tw_fw_connect4
tw_fw_connect6 © tw_fw_sendmsg4 ® tw_fw_sendmsg6 ©® tw_twfw_ingress

[2] https://lwww.kernel.org/doc/html/latest/bpf/btf.html tw_twfw_egress ® wiptingress @ tw_wdb_connect6

Thank you!

The work presented here done by (alphabetically):

Andrey Ignatov
Dmitrii Banshchikov
Julia Kartseva
Takshak Chahande

and many others at Facebook

Q&A

